v50 Steam/Premium information for editors
  • v50 information can now be added to pages in the main namespace. v0.47 information can still be found in the DF2014 namespace. See here for more details on the new versioning policy.
  • Use this page to report any issues related to the migration.
This notice may be cached—the current version can be found here.

v0.31:Computing

From Dwarf Fortress Wiki
Jump to navigation Jump to search
This article is about an older version of DF.
Dwarven Computing at its best: this calculator has more processing power than twenty dwarves combined! However, that's not really saying much.

Computing in Dwarf Fortress is the practice of setting up complex constructions to perform logical operations and calculations; ideally, to control some functionality of your fortress. Even if it isn't a young concept anymore, there is still much room for improvement and development. One reason is that there are many ways to solve one problem. Innovation and invention are encouraged.

Binary information[edit]

Binary information can have one of two possible states: true or false, respectively 1 or 0. In dwarf fortress they can be represented by different entities:

Electronic devices and computers base on this elementary form of information, and if you want to go into computing, you’ll have to familiarize yourself with it. propositional calculus

Input/Output[edit]

Input can be any device which can be linked to another device with mechanisms, such as levers or pressure plates. Pressure plates can measure water, magma, or creature weight, and can be set to react to your own dwarves if measuring creature weight. If measuring water or magma you specify the minimum and maximum levels at which it should output 'on', and at all other levels it will output an 'off' signal. Regardless of the actual amount of water, magma, or creature weight on your pressure plate, the plate can only output an 'on' or 'off' signal (1 or 0) to whatever devices it is linked to. So everything you build will have a binary base.

Input elements[edit]

According to input, output can be anything that is able to react to an on/off signal. This can be doors, bridges, floodgates allowing or stopping flow, gears controlling pumps and much more. In some special configurations - when mechanical logic is involved - output may not be a on/off signal but power, thus running or not running a machine component.

Currently to convert from power to an on/off signal, the only way is to use a kind of power to signal converter, a screw pump connected to that power source, and a pressure plate to measure whether water is being pumped.

Output elements[edit]

Binary logic[edit]

Basic binary logic takes one or two input bits and creates an output based on them. The devices that perform these operations are commonly called logic gates.

  • NOT - takes one input and returns the opposite of the input
input A NOT
0 1
1 0
  • AND - takes two inputs and returns true if both inputs are true
  • OR - takes two inputs and returns true if at least one input is true
  • XOR - takes two inputs and returns true if exactly one input is true
  • NAND - takes two inputs and returns true if either input is false
  • NOR - takes two inputs and returns true if both inputs are false
  • XNOR - takes two inputs and returns true if both inputs are identical
input A input B AND OR XOR NAND NOR NXOR
0 0 0 0 0 1 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1

The most human-understandable logic system requires NOT, AND and OR gates, but having a design for either a NAND or a NOR gate is enough to build any of the other gates. Some gates are easier to create or need fewer components than others depending on what discipline your logic relies on. Designing each individual gate that you will need (or using designs that had each individual gate designed) rather than building a gate out of multiple NAND gates or the like will generally result in your dorfputer reacting faster and using less resources (power, water, kittens, construction materials, what-have-you).

Complex gates[edit]

Disciplines[edit]

There are 3 main disciplines of dwarfputing, depending on what would drive the dwarfputer. Each of them has its assets and drawbacks.

The three disciplines are:

Fluid logic[edit]

Fluid logic is controlling the flow of fluid over different pressure plates. Fluid logic can be easily constructed and every known logic gate in dwarf fortress has already been built with it. On the other hand this discipline depends on a somehow unlimited source of the used fluid to deal with its evaporation and destruction.

Mechanical logic[edit]

Mechanical logic uses systems of axles and gear assemblies to build logical gates. Mechanical logic reacts very fast and can be easily constructed, except for the need for a fluid-pump-based power->signal converter in every gate. Since every gear can itself be linked to a trigger (or multiple triggers), and automatically connect to adjacent gears for transferring either power or load, mechanical logic gates are very flexible and don't require anywhere near the number of different devices that tend to be used in fluid logic gates (except, again, for the requirement for a fluid-pump-based power->signal converter in every gate, unless you intend to use it to control a pump). On the other hand this discipline uses a LOT of mechanical power, and due to the lack of a power->signal converter, also referred to as a "rotation sensor" (a device to convert from power to on/off link signals), you need to build one using fluid logic components if you want to connect multiple mechanical logic gates together or connect a mechanical logic gate to any output other than a pump. There is, however, now a fully functional fluid preserving rotation sensor design. So, in truth, current mechanical logic is more correctly termed mechanical-fluid hybrid logic, as you need some source of fluid to "prime" the rotation sensors your design will need. Along with new techniques to construct logic gates by "pre-toggling" a gear assembly (see Pre-Toggled Mechanical Logic), any logical circuit can be built, given enough space in the game to do it.

Animal logic[edit]

Animal logic places animals in an enclosed room, with a door blocking the path to where they desire to go, and a pressure plate below a hatch, with obstacles which are controlled by triggers. The animal thinks it can walk through the door, and if it has a path to the door will walk up to it and stand on the hatch. When the hatch is opened by a trigger, it falls onto the pressure plate. As long as the hatch is open, or other obstacles block its path to the door it remains on the pressure plate and the output is 'on'. Once it sees a path to the door it will leave the pressure plate. Generally this is made possibly by the fact that animals try to go to their parent while they're children, or to the meeting area. There are also be designs which use captured hostiles.

There was a fourth, theoretical, discipline, Borg Logic, but there was never any reported success inventing any functioning and useful borg logic systems.

Examples of things you could do with logic gates[edit]

  • Repeater: Repeatedly toggling hatches open and closed, or spikes up and down.
  • Latch: Making resettable one-use pressure plates which are reset by a lever.
  • NOT gate: Reversing the effect of a switch or creature-sensing pressure plate, generally linked to a latch device. You can, of course, mod the latch device to send the opposite signal instead of using a NOT gate.
  • AND gate: Requiring more than one condition to be true for something to occur. For instance, you could have a group of AND gates, with a system on/off switch, and and other triggers, with each trigger linked to a different AND gate with the system on/off switch linked to the the second input on all the AND gates, so that when the system on/off switch is OFF the output will be OFF on all the AND gates.
  • OR gate: You could link two 1-7 water sensors to an OR gate, and link that to a NOT gate, and link that to some floodgates or doors which act as emergency bulkheads, closing when water is detected in the area. Or, link the OR gate to bridges which raise instead (but you may crush things, and bridges are slower than doors).
  • XOR gate: You could use pressure plates hooked to latches at different points in your fort to detect enemy intrusion, and set them up to seal off the area with both an interior and exterior bulkhead when the intrusion occurs, but hook your latches up with an XOR gate and hook the output to the interior bulkhead to unseal that one if your pressure plates have detected that the enemy has gotten past it.
  • NOR gate: A NOR gate returns TRUE (ON) only if both inputs are FALSE. Instead of using the OR gate example with a NOT gate, you could use a NOR gate linked to two 1-7 water sensors, whose output goes to doors or floodgates. When the pressure plates are both waterless, the floodgates will be open. When one detects water, the floodgates close. (If you used 0-0 pressure plates with an OR, you would get an OFF signal if both plates detected water, or an ON signal otherwise (which is the same as 1-7 NAND 1-7))
  • NAND gate: A NAND gate returns TRUE (ON) whenever both inputs are not both TRUE (e.g. ON NAND ON is OFF, but every other combination is ON). Instead of the OR NOT or NOR example, you could link two 0-0 water sensors to a NAND gate, and link the NAND gate's output to raising bridges. 0-0 NAND 0-0 is the same as 1-7 OR 1-7. If there is no water on both pressure plates, the NAND gate will output an OFF signal. If, however, either has water, it will output an ON signal.
  • And here's a more complicated example, omitting the details of what gates to use: An automated swimming training room, where you pull a lever to close exit doors and open hatches to drop water into it, then pressure plates detect when there's enough water and close the hatches, and after a certain amount of time (using a very slow repeater, for instance), drains and exit doors open and the system resets until you pull the lever again. Or, the lever could be taken out entirely and the system could be made fully automatic (with dwarves set to train in the room, for instance) using the repeater.

Examples[edit]

There are few examples of a really useful dwarfputer and some concepts which have the potential to become useful for others. But in most cases they are made just for fun. What doesn't mean to diminish their designers achievements, because these are in general the more complex ones. At the moment there are no known examples of animal or borg logic.

Useful[edit]

Concepts[edit]

Such a doddle[edit]


Related user pages[edit]

  • User:BaronW - The Almighty Dwarven Calculator
  • User:Jong/Dwarven_Computer - The first fully programmable digital Dwarven Computer
  • User:SL/Logic Gates - These use mechanisms for connecting gates and devices and so forth, but fluid for logic. They're built on top of a body of water, and require power (for a pump or two per gate).
  • User:Kyace/Adder - A full adder built using fluid logic, with a video of a rough prototype. Trivial to combine 8 of these to make a fluid device capable of adding two 8 bit numbers together.
  • User:Soundandfury#Logic_Gates - These have a water supply reservoir above and a drain below. The drained water can be pumped back to the supply reservoir.
  • User:Bidok - Animal logic with all gates, memory, repeater and counter. All powered by kittens.
  • User:LordOOTFD#Animal_Logic - Animal logic with fast complex gates, building upon Bidok's kitten powered systems.
  • User:Hussell#Assorted_Devices - Fluid logic
  • User:Gammon - Fluid logic. Very detailed CMOS gates.
  • User:Root Infinity - Misc. logic gates.

Rooms
Furniture
Animal trapAnvilArmor standBedBinBoxBucketCabinetCageCoffinRestraintSeatStatueTableWeapon rack

Access
DoorFloodgateBarsGrateFloor hatchBridgeRoadWindow
Constructions
Machine & Trap parts
Other Buildings
Related Articles