v50 Steam/Premium information for editors
  • v50 information can now be added to pages in the main namespace. v0.47 information can still be found in the DF2014 namespace. See here for more details on the new versioning policy.
  • Use this page to report any issues related to the migration.
This notice may be cached—the current version can be found here.

Difference between revisions of "DF2014:Advanced world generation"

From Dwarf Fortress Wiki
Jump to navigation Jump to search
(Undo revision 286078 by 186.216.102.155 due to poor formatting and grammar but added clarifications about mesh ranges)
Tag: Undo
Line 363: Line 363:
 
These parameters control how hot or cold various areas will be. If you lower the minimum and maximum values, the world will be colder overall, for example. As with the others, changing these values too much could make it impossible for certain biomes to exist. See [[Climate]] for more info.
 
These parameters control how hot or cold various areas will be. If you lower the minimum and maximum values, the world will be colder overall, for example. As with the others, changing these values too much could make it impossible for certain biomes to exist. See [[Climate]] for more info.
  
These parameters form the "base" temperature for an area, and describe peak summer temperature in degrees Celsius. This does not correspond 1:1 with the final climate. [[Temperature]] is always influenced by a number of variables, including elevation, time of year, thick forestation, and if [[Advanced_world_generation#Poles|Poles]] are enabled, latitude. These other variables are factored in after the temperature mesh is applied, and frequently bring temperatures above and below their set minimum and maximum values. The inclusion of Poles is particularly strong in this regard, as it allows latitude to raise and/or lower temperatures by more than 75 degrees Celsius! That said, the temperatures aren't raised or lowered by more than about 65 degrees past the set minimum and maximum. Furthermore, for typical ranges the temperature will never be raised more than about 25 degrees past the maximum (but will still drop up to about 65 degrees Celsius below the minimum).
+
These parameters form the "base" temperature for an area, and describe peak summer temperature in a scale that isn't used elsewhere in the game. This number also does not correspond 1:1 with the final climate. [[Temperature]] is always influenced by a number of variables, including elevation, time of year, thick forestation, and if [[Advanced_world_generation#Poles|Poles]] are enabled, latitude. These other variables are factored in after the temperature mesh is applied, and frequently bring temperatures above and below their set minimum and maximum values. The inclusion of Poles is particularly strong in this regard, as it allows latitude to raise and/or lower temperatures by more than 75 degrees Celsius! That said, the temperatures aren't raised or lowered by more than about 65 degrees past the set minimum and maximum. Furthermore, for typical ranges the temperature will never be raised more than about 25 degrees past the maximum (but will still drop up to about 65 degrees Celsius below the minimum).
  
 
With a maximum temperature of 9 degrees, elf (elven) civilizations won't spawn.
 
With a maximum temperature of 9 degrees, elf (elven) civilizations won't spawn.

Revision as of 08:19, 21 January 2023

This article is about an older version of DF.
This article contains information on advanced world generation. For information on basic world generation, see World generation.
See World token to more easily find information by the names used in the world_gen.txt file, World rejection for information on solving problems related to worlds always being rejected, and Worldgen examples for example worlds.

When you want more control of what your world looks like, it's time for advanced world generation: A detailed reference with advice is provided below.

(This article assumes that you are already familiar with basic world generation; if you are not, then please read about that first - the very high amount of extra options for a generated world can provide the player with a much more customized experience.)

Once you select Design New World With Advanced Parameters from the main menu, a screen that looks something like this will appear:

AdvancedWorldGen.png

This screen is relatively intuitive, but some parts could use explanation.

Parameter sets

The list of already-defined parameter sets is in the upper-right corner. You can select the current set that you want to work with using the up and down directional keys.

Hitting a will add a new set to the end of the list. You can also copy an existing set to a new one, allowing you to base a new set on an existing one. Using t you can change the name of the parameter set, but note that this will not affect the name of the world that is generated.

Parameter sets are stored in the data/init/world_gen.txt file in the main DF directory. The F1 and F6 keys will load and save all of the parameter sets to this file. You will need to save the world gen parameters to this file, before you hit Enter to generate the world. The world_gen.txt file can also be edited with a text editor. This is particularly useful because people will often post their parameter sets on the forum or wiki in text form. (See below for more info.) The F1 key comes in handy when editing this file while the game is still running.

To get the parameters used to generate a world you are already playing, press ESC then choose export images; exporting any image will also create the world generation parameter file, for more information see this post.

The tokens used in world_gen.txt are at the bottom of each parameter description. Here's the one for the title.

Token Example Notes
[TITLE: <name>] [TITLE:MEDIUM ISLAND] Required

World name

As previously mentioned, the title of the parameter set doesn't affect the name of the world. You can force a particular name for your world using n or set it back to the default random setting using N.

Token Example Notes
[CUSTOM_NAME: <name>] [CUSTOM_NAME:Realm of Cheese Engravings] For a random name, simply don't use this token.

World dimensions

The size of the map to be generated can be selected with u i o p. Larger maps take longer to generate and may limit FPS in-game.

Changing the dimensions of the world will reset the parameters, because many of them have different defaults depending on the surface area available. Creating larger worlds does not necessarily mean longer world generation time - the essential factor for the gen duration is the history. If you restrict the number of historical events, you can significantly speed up the process.

Token Example Notes
[DIM:<width>:<height>] [DIM:129:129] Valid values are 17, 33, 65, 129, and 257. Others may not work. Non-square maps may result in crashesBug:2928.

Seed values

The world generation process uses a PRNG (Pseudo Random Number Generator) algorithm. A PRNG will produce a sequence of numbers that "looks" random, even though the actual sequence of numbers will always be the same if the PRNG is started with the same seed value. Basically this means that if you run world generation with a certain seed value on your computer, and someone else runs world generation with the same seed value on their computer, the same sequence of random numbers will be generated on both computers. The practical impact of this is that someone else can generate exactly the same world that you generated by entering the same seed value that you used.

In older versions, the same seed value(s) produced identical worlds on every computer at any time (if other parameters were identical, too). In the current version, the seed values for the world itself and the names seem to produce the same result, but you will get changes in events which will result in a very different world history. It seems like the history is partly random and not completely connected to the seed. Keep this in mind if you want to regenerate a particular world.

A specific seed value can be entered with s. This will change all of the seed values to the value you enter. If you need to enter different seed values for each type of seed, use e. In order to find out what seed values were used for the last world you generated, you can look at this screen. If you want to be able to tell someone else how to generate exactly the same world that you just generated, they will need all of the seed values listed under Last Param Set.

When generating a world using a seed, the way that the world is generated is also based at least in part on certain world tokens. As such, you cannot for example, change the minimum and maximum rainfall and get 'the same world but drier or wetter', instead, a different world is generated. That said, it would also seem that certain small changes to these world tokens can occasionally generate a very similar world, however, other tokens are more sensitive. For more information see the forum thread here.

The following are tokens which appear to be involved in the implementation of the seed, and are not safe to change:

  • [DIM:X:X]
  • [ELEVATION:X:X:X:X]
  • [RAINFALL:X:X:X:X]
  • [TEMPERATURE:X:X:X:X]
  • [DRAINAGE:X:X:X:X]
  • [VOLCANISM:X:X:X:X]
  • [SAVAGERY:X:X:X:X]
  • [ELEVATION_FREQUENCY:X:X:X:X:X:X]
  • [RAIN_FREQUENCY:X:X:X:X:X:X]
  • [DRAINAGE_FREQUENCY:X:X:X:X:X:X]
  • [TEMPERATURE_FREQUENCY:X:X:X:X:X:X]
  • [SAVAGERY_FREQUENCY:X:X:X:X:X:X]
  • [VOLCANISM_FREQUENCY:X:X:X:X:X:X]
  • [PARTIAL_OCEAN_EDGE_MIN:X]
  • [COMPLETE_OCEAN_EDGE_MIN:X]
  • [HAVE_BOTTOM_LAYER_1:X]
  • [MINERAL_SCARCITY:X] [1]

Many other world parameters, such as end year and embark points, can, however, be changed without it having any effect on the geography of the world generated from the seed values.

Normally, you don't enter these seed values - the world generation process comes up with seed values based on some sort of "true" random information from things like random values in uninitialized memory, the current date/time, etc. If you have entered a seed value you can revert to all seeds being random using S.

Generating a world

Unless you're using an already-defined parameter set, you will probably want to edit the parameters. Select the set you want to edit using the up/down directional keys and press e. Information about each parameter is documented below.

Once you are happy with the parameters you have set, hit Esc to get back to this screen, hit F6 to save the values you just edited, and hit Enter to start. The rest of the process is the same as basic world generation.

The phases of the world generation process are (this order is not completely correct):

  • Preparing elevation...
  • Setting temperature...
  • Running rivers...
  • Forming lakes and minerals...
  • Growing vegetation...
  • Verifying terrain...
  • Importing wildlife...
  • Recounting legends...
  • Placing civilizations...
  • Making cave civilizations...
  • Making cave pops...
  • Placing other beasts...
  • Placing megabeasts...
  • Placing good/evil...
  • Placing caves...
  • Prehistory generation
  • Finalizing civ mats...
  • Finalizing art...
  • Finalizing uniforms...
  • Finalizing sites...

World painter

Main article: World painter

The world painter tool allows you to paint features onto a map that is then used when generating a world. It is very difficult to use properly, and tends to result in endless rejected worlds, unless you loosen or remove the restrictions placed on biomes and civilizations in the advanced settings. That being said it is also a very powerful tool, and allows you to generate worlds more to your liking.

To access the world painter, hit e to start editing the advanced parameters and finally hit p to open world painter. How to use the world painter is not entirely obvious so please check out the World painter documentation to avoid frustration. (Losing may be fun, but frustration is not.)

Editing the parameters init file

Parameter sets are stored in the data/init/world_gen.txt file, using world tokens. You can copy and paste other players' sets of parameters into your world_gen.txt to use their parameter sets, and some are provided at Pregenerated worlds. Another place to find parameter sets is the Worldgen cookbook thread on the official forums.

Advanced parameters

To access advanced parameters, press e when at the "Design New Worlds with Advanced Parameters" screen. This will bring you to an editable list of various guidelines that the world-gen process will use when creating your new world. The parameters are described below in the order that they appear in the list in the UI, not necessarily the order they appear in the configuration file.

See world token for an index that will help you look things up by token name.

There are essentially 4 types of controls for the generation of the surface map;

Terrain Parameters: as described below, these 5 variables define the basic background world, how hot or cold it is, how much rainfall, how high the mountains are. The world automatically goes through the temperature range along the Y axis, although sometimes it will be hotter in the north, other times in the south. Minimum, maximum and X,Y variance can drastically alter the world.

Weighted Meshes: these are a way to fine-tune the amount of the 5 basic variables on the map. It can be used to set the specific distribution of different elevations or rainfall areas for example.

Rejection Parameters: Dwarf Fortress has a 'belt-and-braces' approach to world generation. The above controls allow you to shape the world, then the rejection parameters throw it out if it isn't right! There are a number of rejection parameters for the number and degree of the 5 basic variables, for biome types etc. If the world does not meet the requirements of any one rejection parameter the world is rejected and re-randomised. Also see World Rejection

There are also the feature-placing options such as rivers, mountain peaks, volcanoes and oceans, which can cause rejections if the terrain parameters don't allow enough suitable locations for the features to be placed.

If you are experimenting with world design, one method would be to disable the rejection parameters and use the first two control types. Otherwise, any significant change will likely result in endless rejections.


Seed values

Here, you can enter specific seed values for different parts of the world generation process - different sequences of pseudorandom numbers are used for different parts, so you can use this to reproduce only the particular part of world generation from some previously generated world, if you want. Normally, you'll want to leave all of these set to Random, unless you're specifically trying to reproduce the results of another world generation run.


Token Example Notes
[SEED:<number>] [SEED:31337]

For each of these not in the config file, a random seed will be used.

[HISTORY_SEED:<number>] [HISTORY_SEED:31337]
[NAME_SEED:<number>] [NAME_SEED:31337]
[CREATURE_SEED:<number>] [CREATURE_SEED:31337]

Embark Points

This controls the number of points that you have for skills and equipment when you embark in fortress mode. Turning this value up will allow games started in this world to start with more skilled dwarves with better equipment. Normally, you can do just fine by leaving this value set to default, but you might want to turn it up for experimental/testing purposes or to help dwarves survive in a particularly evil world, or turn it down for certain challenges. The highest amount this value can be set to is 10,000.

Token Example Notes
[EMBARK_POINTS:<number>] [EMBARK_POINTS:1504] Required

End year

This is how many years of history are generated for the world; basically the same as the History parameter in basic world gen, except that you can enter an exact value for the number of years. See History for more info.

History is divided into "ages" which are determined by the percentage of megabeasts and semi-megabeasts killed at various points. One can attempt to make a world go through the ages more quickly by pumping up the ratio of semimegabeast to megabeast caves, the former of which are usually more killable than the regular megabeasts. This will net you more "Age of Legends", "Age of Heroes", etc.

For more information on the history aspect of the game, see Legends and Ages.

Token Example Notes
[END_YEAR:<number>] [END_YEAR:1050] Required

Population cap after civ creation

This determines the maximum possible population of civilization member historical figures alive at a given time during worldgen. Not all members of a civilization are historical figures. This tag does not directly influence the total population of civilized beings as it once did when populations were all historical figures, so the description is a bit confusing. You can enter -1 to make the historical population unlimited.

Each race may have up to 100 civilizations each, and each civilization a maximum population of 10,000. Civilizations, known as entities in the raw files, have 3 or 4 basic variables that will greatly affect their final placement on the world map. See Population (Entity Token) for more information on interpreting/editing the raws if you need more precise control of civilization placement and total population numbers.

Huge historical figure populations can cause the size of history data to explode, cause history generation to take forever, lower FPS, and generally slow down the game.

Token Example Notes
[TOTAL_CIV_POPULATION:<number>] [TOTAL_CIV_POPULATION:15000] Required

Site cap after civ creation

This controls the maximum number of towns and similar sites on the entire map. Raising the number will allow for more towns, etc. though the number of sites will ultimately still be limited by things like space, terrain, and population cap. Note that this parameter controls only "civilization" sites like towns - other sites, such as lairs, will be added onto this maximum.

After civilizations reach this cap, they will not spread out any more to place new cities. By default, the raws limit each civilization site to a population of 120, regardless of the race of the civilization - therefore, without editing the raws, the total population on the map can't go above site cap x 120.

Beware; increasing this too high can slow worldgen down by a lot. Another effect can be goblins (or other civs) sometimes overwhelming all other civs and/or flooding the world with their homes, leaving no good places to build your fortress, be it human or dwarven. If you choose a low cap to hasten world generation, the cap will likely be reached within years, stopping expansion of all civs. If you want a good, long history, you will have to adjust site/population cap and the number of civs many times to find one fulfilling your needs.

Token Example Notes
[SITE_CAP:<number>] [SITE_CAP:1040] Required

Beast control

These parameters don't usually matter too much, but may matter for small numbers of beasts.

Percentage of Megabeasts and Titans Dead for Stoppage

The world starts out with a certain number of powerful megabeast and titan entities in existence. If a percentage of the megabeast and titan population dies out during history generation, then history generation will stop early. For example, if the elimination value is 80%, and the generated history starts with 200 entities and 160 of those 200 entities are eliminated by historical events before the End Year is reached, history generation will stop immediately.

If you want to end the creation of your world at the beginning of a certain age, choose the following values:

  • Age of Legends: ~34%
  • Age of Heroes: ~67%

If there are three or fewer titans or megabeasts in your world, the age will be given a special name reflecting the remaining megabeasts/titans, instead.

Year to Begin Checking Megabeast Percentage

The percentage of dead megabeasts and titans for stoppage will not be checked until this year is reached in history generation. This can be used to ensure that a world reaches a certain year even if all of the megabeasts in the world are slain earlier.

If the number of living megabeasts and titans starts at or drops to less than four, then world generation will always stop if the current year is equal to or greater than the Year to Begin Checking Megabeast Percentage regardless of how many megabeasts and titans are dead — Percentage of Megabeasts and Titans Dead for Stoppage is ignored. The number of megabeasts and titans at the start of the world is set by the sum of the Max Megabeasts Caves and Titan Number parameters.

Token Example Notes
[BEAST_END_YEAR:<year>:<percentage or -1>] [BEAST_END_YEAR:200:80] Use -1 as percentage to disable. Year must still be at least 2.

Cull Unimportant Historical Figures

Whether or not the game ignores unimportant figures in history generation. The culling is many CPU-intensive steps in history generation but it saves memory and will speed up loading/saving games a bit. This does mean that the "unimportant" figures will not appear in Legends mode or in things like dwarf engravings, but they might not appear in engravings anyway.

Unimportant figures are creatures who suffer early deaths, never having offspring or killing anything named during history generation. For example, residents of goblin towers may get murdered by demons at a young age. After culling unimportant figures, Legends mode would say something like the demon has killed "an unknown creature at Eviltower in the year 102."

Token Example Notes
[CULL_HISTORICAL_FIGURES:<0 or 1>] [CULL_HISTORICAL_FIGURES:0] 0 = No, 1 = Yes

Reveal All Historical Events

Setting this to Yes will allow access to most information about the history of the world in Legends mode. All events will be revealed, but some Historical figures, Sites, Regions, and Civilizations and other entities may not be, possibly because they are not known to any civilization. If set to No, then you will have to discover historical information in adventure mode or by instructing dwarves to make engravings.[Verify]

Token Example Notes
[REVEAL_ALL_HISTORY:<0 or 1>] [REVEAL_ALL_HISTORY::1] 0 = No, 1 = Yes

Terrain Parameters

These determine how random values for terrain elevation, rainfall, temperature, drainage, volcanism, and savagery are generated. What biomes exist are then determined by how these factors overlap with each other.

Minima and Maxima

These are the absolute minimum and maximum values that can ever be generated for a particular map square characteristic. Changing these can cause the occurrence of certain biomes to become impossible, so modify these with care. Because of this problem, you may want to use Weighted Ranges instead. By subtly tweaking the min and max values, vastly different maps can be made.

X and Y Variance

These control how wildly things like elevation and rainfall can vary between adjacent map squares. For example, if these values are set to the maximum of 3,200 for elevation then you will end up with more very low areas right next to very high areas. The number for X determines the east-west variance and the number for Y determines the north-south variance. By setting only one of these to a high value you can, for example, create horizontal or vertical bands of areas which are more similar to each other.

Generally speaking, raising both of these values will create a more random "patchwork" of many small biomes while setting both x and y values to 0 will cause every square on the map to use a single random value for the given characteristic.

For "patchwork" worlds to avoid being rejected, Maximum Number of Subregions will probably need to be increased from the default.

Elevation

This controls the range of terrain elevations that can occur in the world.

Usually you just want to leave the min/max values alone. Raising the minimum elevation can, for example, make it impossible for oceans to exist. This does not directly control the number of available Z-levels at a particular site, though high maximum values may contribute to peaks which can raise the number of above ground Z-levels. In other words, a maximum elevation of 400 and minimum of 1 does not mean you get 400 Z-levels but it might increase the number of Z-levels somewhat in some regions compared to others.

Raising the variance will result in a more bumpy, uneven landscape.

Some biomes/features that are impacted by elevation:

  • A high minimum (above 99) means no oceans as they need elevations below 100.
  • A low maximum (below 300) means no mountains as mountains need elevations above 300.
  • Rivers will be placed when the elevation maximum is 104 or higher. Therefore, keeping both values above 100 and below 104 will prevent all water tiles from appearing.
  • Mountain peaks can only form in squares with an elevation of 400.

Rainfall

Controls the amount of rainfall in each map square/area. Setting the minimum too high or the maximum too low can make the formation of certain biomes impossible. Rainfall causes it to rain more in a given area, which can have various effects. Also makes more rivers appear on the world map.

Note that if orographic precipitation and rain shadows is on, then mountains will cause additional variance in rainfall, so (for example) rainfall below the specified minimum can occur in the shadow of a mountain. If you want the minimum and maximum for this parameter to be absolutely respected, you must turn off the orographic precipitation option.

Additionally, with Orthographic Precipitation turned on, orthographic precipitation and rain shadows will only occur in regions with greater than or equal to 50 drainage. [Report, reproduced 2022]

Temperature

These parameters control how hot or cold various areas will be. If you lower the minimum and maximum values, the world will be colder overall, for example. As with the others, changing these values too much could make it impossible for certain biomes to exist. See Climate for more info.

These parameters form the "base" temperature for an area, and describe peak summer temperature in a scale that isn't used elsewhere in the game. This number also does not correspond 1:1 with the final climate. Temperature is always influenced by a number of variables, including elevation, time of year, thick forestation, and if Poles are enabled, latitude. These other variables are factored in after the temperature mesh is applied, and frequently bring temperatures above and below their set minimum and maximum values. The inclusion of Poles is particularly strong in this regard, as it allows latitude to raise and/or lower temperatures by more than 75 degrees Celsius! That said, the temperatures aren't raised or lowered by more than about 65 degrees past the set minimum and maximum. Furthermore, for typical ranges the temperature will never be raised more than about 25 degrees past the maximum (but will still drop up to about 65 degrees Celsius below the minimum).

With a maximum temperature of 9 degrees, elf (elven) civilizations won't spawn. Humans need at least 0 degrees.

Drainage

Changing drainage parameters will change the way water-affected biomes are formed. Low drainage will contribute to the formation of lakes, rivers, and swamps. High drainage will cause water to sink into the ground rather than sit on the surface, which is important for forming hills.

Lower drainage values have been reported to contribute to the formation of thicker soil layers, though it is currently unknown exactly how other factors (such as elevation or perhaps rain) impact soil formation.

Volcanism

Volcanism controls the occurrence of igneous Layers, and the formation of volcanoes. For a volcano to form, a square must have a volcanism value of 100 so reducing the maximum from 100 will make volcanoes impossible. Raising the minimum will increase the rarity of non-igneous layers.

Setting the minimum to a high value is not a good way to produce multiple volcanoes, as you are likely to get a "Volcanism not evenly distributed" rejection. Instead use the Minimum Number of Volcanoes parameter and possibly adjust the weighted ranges for volcanism as described below.

Savagery

These parameters control the level of savagery on the map. Raising the minimum savagery too high may make it impossible for certain races to exist, and similarly lowering the maximum too far can make it impossible for certain creatures to exist. The largest chance of having unusable maps comes from too high of a savagery value.

Configuration Tokens

Token Example Notes
[ELEVATION:<min>:<max>:<x variance>:<y variance>] [ELEVATION:1:400:401:401] Range: 0 to 400
Maximum of 400 required for mountain peaks.
Variance range: 0-3200
[RAINFALL:<min>:<max>:<x variance>:<y variance>] [RAINFALL:0:100:200:200] Range: 0 to 100
Variance range: 0-3200
[TEMPERATURE:<min>:<max>:<x variance>:<y variance>] [TEMPERATURE:25:75:200:200] Range: -1000 to 1000
Variance range: 0-3200
[DRAINAGE:<min>:<max>:<x variance>:<y variance>] [DRAINAGE:0:100:200:200] Range: 0 to 100
Variance range: 0-3200
[VOLCANISM:<min>:<max>:<x variance>:<y variance>] [VOLCANISM:1:100:200:200] Range: 0 to 100
Maximum of 100 required for volcanoes.
Variance range: 0-3200
[SAVAGERY:<min>:<max>:<x variance>:<y variance>] [SAVAGERY:1:100:200:200] Range: 0 to 100
Variance range: 0-3200

Terrain Mesh Sizes and Weights

These parameters make it possible to influence the number of squares in a particular range, without making conditions outside of that range impossible. For example, you can make it possible for many more low-elevation squares to exist without making it impossible for high elevations to form. Changing these parameters is often preferable to simply changing the min/max values.

The basic steps of applying weighted ranges are as follows:

  1. Create a grid with 2MeshSize - 1 tiles in both X and Y direction.
  2. Set the intersection points of the grid lines to a random value according to the weighted ranges.
  3. Smooth out the area between the intersection points.
  4. Add noise according to the variance parameters.

where MeshSize is the raw parameter value found in the world_gen.txt. See the image on the right for an example.

A large world generated with an Elevation Mesh Size of 32×32 and range weights set to 1:0:0:0:1 (i.e., only extreme high and low elevations). Note how the grid intersections are either set very high or very low and the space between them is smoothed out.

Mesh Size/Weighted Ranges

Mesh size determines how many grid tiles there will be. Setting this to Ignore will cause the weighted range settings to be ignored for that terrain characteristic. As an example, setting it to 2×2 means the grid will be 2 times 2 tiles large and there will be 3×3 for a total of 9 intersection points. On a pocket world, this means one grid tile will be 8×8 world tiles large, whereas on a large world, one grid tile will be 128×128 world tiles. Note that the highest possible value for a given world size will always make the grid tiles 8×8 world tiles large.


If mesh size is set to something other than Ignore, these weights will be applied at the granularity of the selected mesh size for purposes of generating random values in each range. This allows random number generation to be non-linear for the given terrain characteristic.

For example, if the Elevation Weighted Range parameters were set to (starting with the 0%-20% range) 60:10:10:10:10 (these values do not have to add up to any particular number) and elevation min and max are set to 1 and 400 respectively then about 60% of the grid line intersection points (on average) will be set to an elevation in the range of 1-80 (0% to 20%), and the other ranges (20%-40%, 40%-60%, etc.) will be represented by around 10% of the intersection points each. The exact distribution is still left up to chance though on average it will be close to this specification.

Weighted ranges do not make rejection checks, although they can be responsible for many rejections if you neglect to adjust or disable some of the Minimum Number of Mid/Low/High Characteristic Squares for example.

Interaction between Mesh Size and Variance

The end result can vary greatly depending on how the corresponding X and Y Variance parameters are set. First of all, if the variance is too large the noise it adds can completely negate the effect of the weighted ranges. For instance, with a 2×2 mesh, the default variance parameters are high enough that usually the mesh grid can hardly be recognized. How strong the variance's effect is, is also dependent on the mesh size. Having a larger mesh size (i.e. smaller grid tiles) means the variance also has to be higher for a visible effect. For instance, with a variance of 400, the effects are clearly visible with a 2×2 mesh and barely visible at all with a 8×8 mesh. Note that this effect is directly dependent on the mesh size and not, as one might expect, on the actual size of the grid tiles. This means, that a large world with a 2×2 mesh will look essentially the same as a pocket world with a 2×2 mesh, only stretched to 256 times the size.

Also see this forum post for more details.

Configuration Tokens

Token Example Notes
[ELEVATION_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [ELEVATION_FREQUENCY:2:1:2:3:4:5] Valid mesh values:

1 = Ignore

2 = 2x2

3 = 4x4

4 = 8x8

5 = 16x16

6 = 32x32

(limited by world size)

[RAIN_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [RAIN_FREQUENCY:3:1:2:3:4:5]
[DRAINAGE_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [DRAINAGE_FREQUENCY:4:1:2:3:4:5]
[TEMPERATURE_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [TEMPERATURE_FREQUENCY:1:1:1:1:1:1]
[SAVAGERY_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [SAVAGERY_FREQUENCY:5:1:2:3:4:5]
[VOLCANISM_FREQUENCY:<mesh>:<0-20 weight>:<20-40 weight>:<40-60 weight>:<60-80 weight>:<80-100 weight>] [VOLCANISM_FREQUENCY:1:1:1:1:1:1]

Poles

With this, you can influence how polar regions are added. The poles can be on the north or south edge, and the equator will be on the opposite edge, or in the middle if there are two poles. If poles are set to NONE, then there will be no seasonal changes in the weather (e.g. no winter snow in temperate biomes).

Token Example Notes
[POLE:<placement>] [POLE:NORTH] Viable options: NONE, NORTH_OR_SOUTH, NORTH_AND_OR_SOUTH, NORTH, SOUTH, NORTH_AND_SOUTH

Minimum Mountain Peak Number

This will cause the world to be rejected if fewer than this many peaks (based on elevation) are present on the map. EG: elevations of 400 must be possible for mountain peaks to occur. If set to zero, then worlds will not be rejected based on number of peaks.

You may need to adjust elevation parameters, such as the highest weighted range, in order to get the desired number of elevation-400 squares needed for larger numbers of peaks. Like volcanoes, mountain peaks can make embark zones more interesting, but other than that, they don't appear to "do" anything special. Reportedly, they do increase the highest Z-level above ground in all embark zones in the same region, even if the selected embark zone does not include the peak.

Token Example Notes
[PEAK_NUMBER_MIN:<number>] [PEAK_NUMBER_MIN:20] Elevations of 400 must occur for peaks to form.

Minimum Partial Edge Oceans

This will cause a world to be rejected unless there are at least this many oceans touching an edge of the map. If set to zero then worlds will not be rejected based on this criterion. Setting both this parameter and Minimum Complete Edge Oceans to values that total more than 4 when added together may cause all worlds to be rejected as you can't have both a partial and complete edge ocean on a given edge.

Token Example Notes
[PARTIAL_OCEAN_EDGE_MIN:<number>] [PARTIAL_OCEAN_EDGE_MIN:2] Maximum of 4

Minimum Complete Edge Oceans

This will cause a world to be rejected unless there are at least this many oceans which completely cover an edge of the map. Since a square map only has 4 edges, the maximum value possible is 4. If set to zero then worlds will not be rejected based on this criterion but still might end up with complete edge oceans by chance.

Note that the ability for this many edge oceans to exist will be limited by elevation. Therefore, to actually create large oceans you will probably need to change things like the Elevation Mesh Size and Weighted Ranges to increase the number and distribution of very low elevation squares on the map. In addition, if Complete Edge Oceans is set to any value other than 0 or 4, you may need to lower elevation variance for at least one of the axes: if set too high, such as a variation of 1600 for both X and Y axes (the default for Large Island and Medium Island parameter sets), the game may generate worlds very slowly or even hang.Bug:565

Given appropriate weight, range, and variance values for things like elevation, a setting of:

  • 1 results in a world that seems like a chunk of coastline. One edge of the map will be completely underwater and there will be ocean taking up much of the map on that side (think the east or west coast of the United States, the north coast of Canada, or southern Europe). If your edge ocean happens to pick your world's frozen side, most of it will be glacier.
  • 2 results in another coastline along with the first one. The map could end up looking something like Panama if the oceans pick opposite sides of the map.
  • 3 results in a peninsula, like Florida in the US. There will be oceans surrounding 3 sides of the map, and land touching only one side of the map.
  • 4 results in one or more island(s) depending on things like elevation variance and weights. Regardless of whether you get one island or multiple islands, the entire map will be surrounded by water.

Unfortunately there's no easy way to control which oceans end up on which edges, except perhaps setting X and Y variance to different values.

Edge oceans will take up part of the other edges too. For example, a full edge ocean on the east side will have part of the north and south sides underwater, but that does not add to the partial edge oceans count.

Token Example Notes
[COMPLETE_OCEAN_EDGE_MIN:<number>] [COMPLETE_OCEAN_EDGE_MIN:0] Maximum of 4

Minimum Volcano Number

Worlds with less than this number of volcanoes will be rejected. Note that this will not just create this many volcanoes at random; there must be at least this many squares with a Volcanism of 100. Therefore, adjusting Weighted Range for 80-100 to some higher value is recommended if you want to facilitate a large number of volcanoes. In addition, Maximum Volcanism must be set to 100 or squares with volcanism of 100 will be impossible, making volcanoes impossible.

Token Example Notes
[VOLCANO_MIN:<number>] [VOLCANO_MIN:15] Volcanoes require a volcanism of 100 to occur.

Mineral Scarcity

Controls the frequency at which minerals occur - setting this value lower will increase the amount and number of different types of ore present on a map, and the number/types of gems. The default value will result in a maximum of 2-4 metal ores per map (assuming you choose a good embark location) which may be limiting until the economy is fully implemented and desired metals can be traded for.

The options "Very Rare", "Rare", "Sparse", "Frequent", and "Everywhere" in the basic world generation menu use the values 50000, 10000, 2500, 500 and 100 respectively.

According to research by Shandra in v0.31.25, this is the relationship between the value of this setting and the approximate number of gems and ore:

MineralSetting v25 limit10k.png

This is for the same 8x8 embark region in a world which is otherwise the same, except for the mineral scarcity parameter (although most of the detailed information comes from experiments with previous versions).

Token Example Notes
[MINERAL_SCARCITY:<number>] [MINERAL_SCARCITY:2500] Range: 100 to 100,000

Note: as of v0.34, low mineral scarcity settings do not cause rejections.

Max Megabeast Caves

This is the number of megabeasts placed at the beginning of history. Megabeasts are hydras, bronze colossuses, rocs, and dragons, which are all placed in equal proportions data.

Increasing this value can lead to early extinction of civilizations.

Token Example Notes
[MEGABEAST_CAP:<number>] [MEGABEAST_CAP:75] Megabeasts count towards BEAST_END_YEAR calculation.

Max Semi-Megabeast Caves

This is the number of semi-megabeasts placed at the beginning of history. Semimegabeasts are giants, ettins, minotaurs, and cyclops, which are placed in equal proportions data.

Token Example Notes
[SEMIMEGABEAST_CAP:<number>] [SEMIMEGABEAST_CAP:150] Semimegabeasts do not count towards the BEAST_END_YEAR calculation.

Titan Parameters

Number

This controls the number of titans that exist at the beginning of historydata. The number of forgotten beasts is unaffected by this parameter data.

Token Example Notes
[TITAN_NUMBER:<number>] [TITAN_NUMBER:33] Titans count towards BEAST_END_YEAR calculation.

Attack Population Requirement

Titans will begin to attack your fort once at least this many dwarves inhabit it, regardless of whether any other attack criteria have been met. This number defaults to 80, which isn't usually too difficult to deal with.

Exported Wealth Requirement

Titans will begin to attack your fort once you have exported at least this many dwarfbucks-worth of goods, regardless of whether or not any other criteria have been met. This parameter defaults to None (disabled).

Created Wealth Requirement

Titans will begin to attack your fort once the fort's total wealth has reached this many dwarfbucks in value. This happens regardless of whether any of the other criteria, such as population, have been met; therefore, even with 1 dwarf, a fort could be attacked if the fort were worth at least this value.

Token Example Notes
[TITAN_ATTACK_TRIGGER:<population>:<exp wealth>:<created wealth>] [TITAN_ATTACK_TRIGGER:80:0:100000] 0 = None (disabled). Only one requirement must be met for an attack.

Number of Demon Types

Demons are similar to titans and forgotten beasts, in that they are procedurally generated, but unlike titans, they are not unique. Thus, many different types of demons will exist in the world, but there will be many members of each type. Setting this to zero means no demons will exist, limiting the amount of fun you can have. Thanks to certain fun things, fewer demon types also means fewer goblin civilizations[1].You need at least 2 demon types, or goblin civilizations won't exist.

Token Example Notes
[DEMON_NUMBER:<number>] [DEMON_NUMBER:52] 0 to 1000

Number of Night Troll Types

The number of different night trolls, also procedurally generated, that will exist in the world. Setting this to zero means that the world will have no night trolls, custom or otherwise

Token Example Notes
[NIGHT_TROLL_NUMB