v50 Steam/Premium information for editors
  • v50 information can now be added to pages in the main namespace. v0.47 information can still be found in the DF2014 namespace. See here for more details on the new versioning policy.
  • Use this page to report any issues related to the migration.
This notice may be cached—the current version can be found here.

Editing v0.34:Computing

Jump to navigation Jump to search

Warning: You are not logged in.
Your IP address will be recorded in this page's edit history.

You are editing a page for an older version of Dwarf Fortress ("Main" is the current version, not "v0.34"). Please make sure you intend to do this. If you are here by mistake, see the current page instead.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
 +
{{av}}
 
{{Quality|Exceptional}}
 
{{Quality|Exceptional}}
{{Computing}}
+
[[File:7x191.PNG|right|thumb|Dwarven Computing at its best: this calculator has more processing power than twenty dwarves combined! However, that's not really saying much.]]
{{av}}
 
 
 
 
Computing in Dwarf Fortress is the practice of setting up complex constructions to perform logical operations and calculations; ideally, to control some functionality of your fortress. Even if it isn't a young concept anymore, there is still much room for improvement and development. One reason is that there are many ways to solve one problem. Innovation and invention are encouraged.
 
Computing in Dwarf Fortress is the practice of setting up complex constructions to perform logical operations and calculations; ideally, to control some functionality of your fortress. Even if it isn't a young concept anymore, there is still much room for improvement and development. One reason is that there are many ways to solve one problem. Innovation and invention are encouraged.
 
=== Binary information ===
 
=== Binary information ===
 
Binary information can have one of two possible states: true or false, respectively 1 or 0. In dwarf fortress they can be represented by different entities:
 
Binary information can have one of two possible states: true or false, respectively 1 or 0. In dwarf fortress they can be represented by different entities:
* on/off state or signal of a trigger ([[pressure plate]] or [[lever]])
+
* on/off state or signal of a [[trigger]] (pressure plate, lever)
 
* power or connection state of a [[machine component]]
 
* power or connection state of a [[machine component]]
 
* open or closed state of a [[door]] or similar buildings
 
* open or closed state of a [[door]] or similar buildings
 
* [[pressure plate|low/high]] or [[flow|flowing/standing]] [[water|fluid]]
 
* [[pressure plate|low/high]] or [[flow|flowing/standing]] [[water|fluid]]
 
* present [[creature]]s and [[dwarf|borgs]]
 
* present [[creature]]s and [[dwarf|borgs]]
* present [[minecart]]s on track
 
  
 
Electronic devices and computers base on this elementary form of information, and if you want to go into computing, you’ll have to familiarize yourself with it. [http://en.wikipedia.org/wiki/Propositional_calculus propositional calculus]
 
Electronic devices and computers base on this elementary form of information, and if you want to go into computing, you’ll have to familiarize yourself with it. [http://en.wikipedia.org/wiki/Propositional_calculus propositional calculus]
 
=== Input/Output ===
 
=== Input/Output ===
Input can be any device which can be linked to another device with mechanisms, such as [[lever|levers]] or [[pressure plate|pressure plates]]. Pressure plates can measure water or magma depth, or creature or minecart weight, and can be set to react to your own dwarves if measuring creature weight. If measuring water or magma you specify the minimum and maximum levels at which it should output 'on', and at all other levels it will output an 'off' signal. Regardless of the actual amount of water or magma or the exact weight of a creature or cart on your pressure plate, the plate can only output an 'on' or 'off' signal (1 or 0) to whatever devices it is linked to. So everything you build will have a binary base.
+
Input can be any device which can be linked to another device with mechanisms, such as [[lever|levers]] or [[pressure plate|pressure plates]]. Pressure plates can measure water, magma, or creature weight, and can be set to react to your own dwarves if measuring creature weight. If measuring water or magma you specify the minimum and maximum levels at which it should output 'on', and at all other levels it will output an 'off' signal. Regardless of the actual amount of water, magma, or creature weight on your pressure plate, the plate can only output an 'on' or 'off' signal (1 or 0) to whatever devices it is linked to. So everything you build will have a binary base.
  
 
====Input elements====
 
====Input elements====
Line 21: Line 19:
 
* triggered: [[pressure plate]] -> binary on/off signal
 
* triggered: [[pressure plate]] -> binary on/off signal
  
According to input, output can be anything that is able to react to an on/off signal. This can be doors, bridges, floodgates allowing or stopping flow, gears controlling pumps and much more. In some special configurations - when [[mechanical logic]] is involved - output may not be an on/off signal but power, thus running or not running a machine component.
+
According to input, output can be anything that is able to react to an on/off signal. This can be doors, bridges, floodgates allowing or stopping flow, gears controlling pumps and much more. In some special configurations - when [[mechanical logic]] is involved - output may not be a on/off signal but power, thus running or not running a machine component.
  
Currently to convert from power to an on/off signal, the only way is to use a kind of [[Mechanical_logic#Power_to_signal_converter|power to signal converter]]. This can be a screw pump connected to that power source, and a pressure plate to measure whether water is being pumped, or a minecart moved by a roller over a closed track with a pressure plate activated by its passage.
+
Currently to convert from power to an on/off signal, the only way is to use a kind of [[Mechanical_logic#Power_to_signal_converter|power to signal converter]], a screw pump connected to that power source, and a pressure plate to measure whether water is being pumped.
 
<!-- ...screw pump connected to that power source <s>with an unlimited amount of water and drainage at the output</s>, and a pressure plate to measure whether water is being pumped<s> out by the pump</s>. -->
 
<!-- ...screw pump connected to that power source <s>with an unlimited amount of water and drainage at the output</s>, and a pressure plate to measure whether water is being pumped<s> out by the pump</s>. -->
  
Line 31: Line 29:
  
 
=== Binary logic ===
 
=== Binary logic ===
Basic binary logic takes one or two input bits and creates an output based on them. The devices that perform these operations are commonly called '''logic gates'''.
+
Basic binary logic takes one or two input bits and creates an output based on them. The devices that perform these operations are commonly called '''logic gates'''.<br />
 
+
* NOT - takes one input and returns the opposite of the input<br /><br />
* NOT - takes one input and returns the opposite of the input
 
 
 
 
{| class="wikitable" border=1
 
{| class="wikitable" border=1
 
|-
 
|-
Line 45: Line 41:
 
| 1
 
| 1
 
| 0
 
| 0
|}
+
|}<br />
 
 
 
* AND - takes two inputs and returns true if both inputs are true
 
* AND - takes two inputs and returns true if both inputs are true
 
* OR - takes two inputs and returns true if at least one input is true
 
* OR - takes two inputs and returns true if at least one input is true
Line 52: Line 47:
 
* NAND - takes two inputs and returns true if either input is false
 
* NAND - takes two inputs and returns true if either input is false
 
* NOR - takes two inputs and returns true if both inputs are false
 
* NOR - takes two inputs and returns true if both inputs are false
* XNOR - takes two inputs and returns true if both inputs are identical
+
* XNOR - takes two inputs and returns true if both inputs are identical<br /><br />
 
 
 
{| class="wikitable" border=1
 
{| class="wikitable" border=1
 
|-
 
|-
Line 100: Line 94:
 
| 0
 
| 0
 
| 1
 
| 1
|}
+
|}<br />
 
 
 
The most human-understandable logic system requires NOT, AND and OR gates, but having a design for either a NAND or a NOR gate is enough to build any of the other gates. Some gates are easier to create or need fewer components than others depending on what discipline your logic relies on. Designing each individual gate that you will need (or using designs that had each individual gate designed) rather than building a gate out of multiple NAND gates or the like will generally result in your dorfputer reacting faster and using less resources (power, water, kittens, construction materials, what-have-you).
 
The most human-understandable logic system requires NOT, AND and OR gates, but having a design for either a NAND or a NOR gate is enough to build any of the other gates. Some gates are easier to create or need fewer components than others depending on what discipline your logic relies on. Designing each individual gate that you will need (or using designs that had each individual gate designed) rather than building a gate out of multiple NAND gates or the like will generally result in your dorfputer reacting faster and using less resources (power, water, kittens, construction materials, what-have-you).
  
Line 107: Line 100:
 
* [[Latch]] - storing and reading a single binary value
 
* [[Latch]] - storing and reading a single binary value
 
* [[Repeater]] - sending a repeating signal
 
* [[Repeater]] - sending a repeating signal
* [[Adder (Computing)|Counter/Adder]] - binary calculation
+
* [[Counter]]/[[Adder]] - binary calculation
  
 
== Disciplines ==
 
== Disciplines ==
There are 4 main disciplines of dwarfputing, depending on what would drive the dwarfputer. Each of them has its assets and drawbacks.
+
There are 3 main disciplines of dwarfputing, depending on what would drive the dwarfputer. Each of them has its assets and drawbacks.
  
The four disciplines are:
+
The three disciplines are:
 
=== Fluid logic ===
 
=== Fluid logic ===
 
[[Fluid logic]] is controlling the ''flow of fluid'' over different pressure plates. Fluid logic can be easily constructed and every known logic gate in dwarf fortress has already been built with it. On the other hand this discipline depends on a somehow unlimited source of the used fluid to deal with its [[evaporation]] and [[Water#Water in Fortress Mode|destruction]].
 
[[Fluid logic]] is controlling the ''flow of fluid'' over different pressure plates. Fluid logic can be easily constructed and every known logic gate in dwarf fortress has already been built with it. On the other hand this discipline depends on a somehow unlimited source of the used fluid to deal with its [[evaporation]] and [[Water#Water in Fortress Mode|destruction]].
  
 
=== Mechanical logic ===
 
=== Mechanical logic ===
[[Mechanical logic]] uses systems of axles and [[gear assembly|gear assemblies]] to build logical gates. Mechanical logic reacts very fast and can be easily constructed. Since every gear can itself be linked to a trigger (or multiple triggers), and automatically connects to adjacent gears for transferring either power or load, mechanical logic gates are very flexible and don't require anywhere near the number of different devices that tend to be used in fluid logic gates. On the negative side, this discipline uses a LOT of mechanical power and basic mechanic gates output no signals but power. If you need a signal as output, either to control signal-operated buildings like doors or bridges or to perform further logical operations, you will need power->signal converters.   There is, however, a fully functional fluid preserving "rotation sensor" design. With the advent of [[Minecart]]s, compact fluid-less power->signal converters have become available, making [[Minecart logic]] an attractive alternative for deploying mechanical logic in your fortress. Along with advanced techniques to construct logic gates by "pre-toggling" a gear assembly (see [[Pre-Toggled Mechanical Logic]]), any logical circuit can be built, given enough space in the game to do it.  
+
[[Mechanical logic]] uses systems of axles and [[gear assembly|gear assemblies]] to build logical gates. Mechanical logic reacts very fast and can be easily constructed, except for the need for a fluid-pump-based power->signal converter in every gate. Since every gear can itself be linked to a trigger (or multiple triggers), and automatically connect to adjacent gears for transferring either power or load, mechanical logic gates are very flexible and don't require anywhere near the number of different devices that tend to be used in fluid logic gates (except, again, for the requirement for a fluid-pump-based power->signal converter in every gate, unless you intend to use it to control a pump). On the other hand this discipline uses a LOT of mechanical power, and due to the lack of a power->signal converter, also referred to as a "rotation sensor" (a device to convert from power to on/off link signals), you need to build one using fluid logic components if you want to connect multiple mechanical logic gates together or connect a mechanical logic gate to any output other than a pump. There is, however, now a fully functional fluid preserving rotation sensor design. So, in truth, current mechanical logic is more correctly termed mechanical-fluid hybrid logic, as you need some source of fluid to "prime" the rotation sensors your design will need. Along with new techniques to construct logic gates by "pre-toggling" a gear assembly (see [[Pre-Toggled Mechanical Logic]]), any logical circuit can be built, given enough space in the game to do it.
  
 
=== Creature logic ===
 
=== Creature logic ===
[[Creature logic]] uses pressure plates and constraints on creatures' movement through buildings such as doors and [[hatch cover|hatches]], in conjunction with their [[path]]ing behavior, to build logical gates.  Creature logic is very space intensive, but requires no power, fluid, or valuable materials.  Every kind of logical circuit can built with creature logic.
+
[[Creature logic]] uses pressure plates and constraints on creatures' movement through buildings such as doors and [[hatch]]es, in conjunction with their [[path]]ing behavior, to build logical gates.  Creature logic is very space intensive, but requires no power, fluid, or valuable materials.  Every kind of logical circuit can built with creature logic.
 
 
[[Animal logic]] is a special kind of creature logic that relies on animals attempting to path through tightly closed doors. Animal logic circuits can be much more space efficient than other forms of creature logic, but are somewhat unreliable.
 
  
=== Minecart Logic ===
+
[[Animal logic]] is a special kind of creature logic that relies on animals attempting to path through tightly closed doorsAnimal logic circuits can be much more space efficient that other forms of creature logic, but is somewhat unreliable.
[[Minecart logic]] involves the control of the paths of [[minecart]]s over pressure plates to build logical gatesMinecart integrates easily with mechanical logic.  Power, perhaps surprisingly, is optional.  Minecart logic is complete and compact.  It lacks the brute speed of which mechanical circuits are capable, but minecart circuit design may be much simpler and more intuitive to some architects.
 
  
 
===Examples of things you could do with logic gates===
 
===Examples of things you could do with logic gates===
Line 131: Line 121:
 
* Latch: Making resettable one-use pressure plates which are reset by a lever.
 
* Latch: Making resettable one-use pressure plates which are reset by a lever.
 
* NOT gate: Reversing the effect of a switch or creature-sensing pressure plate, generally linked to a latch device. You can, of course, mod the latch device to send the opposite signal instead of using a NOT gate.
 
* NOT gate: Reversing the effect of a switch or creature-sensing pressure plate, generally linked to a latch device. You can, of course, mod the latch device to send the opposite signal instead of using a NOT gate.
* AND gate: Requiring more than one condition to be true for something to occur. For instance, you could have a group of AND gates, with a system on/off switch, and other triggers, with each trigger linked to a different AND gate with the system on/off switch linked to the second input on all the AND gates, so that when the system on/off switch is OFF the output will be OFF on all the AND gates.
+
* AND gate: Requiring more than one condition to be true for something to occur. For instance, you could have a group of AND gates, with a system on/off switch, and and other triggers, with each trigger linked to a different AND gate with the system on/off switch linked to the the second input on all the AND gates, so that when the system on/off switch is OFF the output will be OFF on all the AND gates.
 
* OR gate: You could link two 1-7 water sensors to an OR gate, and link that to a NOT gate, and link that to some floodgates or doors which act as emergency bulkheads, closing when water is detected in the area. Or, link the OR gate to bridges which raise instead (but you may crush things, and bridges are slower than doors).
 
* OR gate: You could link two 1-7 water sensors to an OR gate, and link that to a NOT gate, and link that to some floodgates or doors which act as emergency bulkheads, closing when water is detected in the area. Or, link the OR gate to bridges which raise instead (but you may crush things, and bridges are slower than doors).
 
* XOR gate: You could use pressure plates hooked to latches at different points in your fort to detect enemy intrusion, and set them up to seal off the area with both an interior and exterior bulkhead when the intrusion occurs, but hook your latches up with an XOR gate and hook the output to the interior bulkhead to unseal that one if your pressure plates have detected that the enemy has gotten past it.
 
* XOR gate: You could use pressure plates hooked to latches at different points in your fort to detect enemy intrusion, and set them up to seal off the area with both an interior and exterior bulkhead when the intrusion occurs, but hook your latches up with an XOR gate and hook the output to the interior bulkhead to unseal that one if your pressure plates have detected that the enemy has gotten past it.
Line 140: Line 130:
  
 
== Examples ==
 
== Examples ==
There are few examples of a really useful dwarfputer and some concepts which have the potential to become useful for others. But in most cases they are made just for fun. What doesn't mean to diminish their designers achievements, because these are in general the more complex ones. At the moment there are no known examples of animal or borg logic.
+
There are few examples of a really useful dwarfputer and some concepts which have the potential to become useful for others. But in most cases they are made just for fun. What doesn't mean to diminish their designers achievements, because these are in general the more complex ones.<br />At the moment there are no known examples of animal or borg logic.
 
=== Useful ===
 
=== Useful ===
 
* Magma trap
 
* Magma trap
** This is an example of a useful dwarfputer controlling a magma trap. It automatically floods an area with lava, cleans up and resets afterwards. The timing is perfectly adjusted to let the victims vanish only leaving their valuable metal behind.
+
** This is an example of a useful dwarfputer controlling a magma trap. It automatically floods an area with lava, cleans up and resets afterwards. The timing is perfectly adjusted to let the victims vanish only leaving their valuable metal behind.<br />video: http://mkv25.net/dfma/movie-1808-perfectmagmatrap<br />design: http://i576.photobucket.com/albums/ss208/kanddak/magmatrap.png
*** video: http://mkv25.net/dfma/movie-1808-perfectmagmatrap
 
*** design: http://i576.photobucket.com/albums/ss208/kanddak/magmatrap.png
 
  
 
=== Concepts ===
 
=== Concepts ===
Line 174: Line 162:
 
*[[User:Root Infinity]] - Misc. logic gates.
 
*[[User:Root Infinity]] - Misc. logic gates.
 
*[[User:Vasiln/Goblin Logic 1]] - Theory and practice of invader-based creature logic.
 
*[[User:Vasiln/Goblin Logic 1]] - Theory and practice of invader-based creature logic.
*[[User:Larix/MPL]] - A thorough treatment of minecart logic from first principles.
 
  
 
{{buildings}}
 
{{buildings}}
 
{{Category|Computing}}
 
{{Category|Computing}}

Please note that all contributions to Dwarf Fortress Wiki are considered to be released under the GFDL & MIT (see Dwarf Fortress Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

Templates used on this page: