v50 Steam/Premium information for editors
  • v50 information can now be added to pages in the main namespace. v0.47 information can still be found in the DF2014 namespace. See here for more details on the new versioning policy.
  • Use this page to report any issues related to the migration.
This notice may be cached—the current version can be found here.

Editing Material science

Jump to navigation Jump to search

Warning: You are not logged in.
Your IP address will be recorded in this page's edit history.

If you are creating a redirect to the current version's page, do not use any namespace. For example: use #REDIRECT [[Cat]], not #REDIRECT [[Main:Cat]] or #REDIRECT [[cv:Cat]]. See DF:Versions for more information.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision Your text
Line 26: Line 26:
 
Fracture: The fracture point is the amount of stress or force necessarily to cause the material to fail, or in other words, to break.
 
Fracture: The fracture point is the amount of stress or force necessarily to cause the material to fail, or in other words, to break.
  
Strain at yield (sometimes incorrectly referred to as 'elasticity'): This variable tells you how much deformation occurs to the material while it is deforming elastically.  That is, as long as the force is less than the yield strength, stress * strain at yield = deformation distance.  The smaller the strain at yield, the less deformation occurs under stress. Strain is measured as parts-per-100000, meaning that 100000 strain is 100% deformation.
+
Strain at yield (sometimes incorrectly referred to as 'elasticity'): This variable tells you how much deformation occurs to the material while it is deforming elastically.  That is, as long as the force is less than the yield strength, stress * strain at yield = deformation distance.  The smaller the strain at yield, the less deformation occurs under stress.
  
Note: Strain at yield is the inverse of the relevant elastic modulus, thus a highly elastic material has low elastic modulus, and engages in less elastic collisions.
+
Note: Strain at yield is the inverse of the Elastic Modulus.  Thus a highly elastic material has low elastic modulus, and engages in less elastic collisions.
  
 
===Modes of Applying Force===
 
===Modes of Applying Force===

Please note that all contributions to Dwarf Fortress Wiki are considered to be released under the GFDL & MIT (see Dwarf Fortress Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel Editing help (opens in new window)

This page is a member of 2 hidden categories: